Bài tập không gian vecto con có lời giải | Xem phát hiểu luôn

Bài viết dưới đây TTnguyen sẽ tổng hợp các kiến thức cơ bản cùng các dạng bài tập liên quan về  không gian vecto con giúp các bạn ôn tập được dễ dàng môn đại số và hình học giải tích.

1. Không gian vecto con

Tập hợp A ≠ ∅ của Rn được gọi là không gian vecto con của Rn nếu:

  • ∀x,y ∈ A, x+y ∈ A
  • ∀α ∈ R, ∀x ∈ A, αx ∈ A

Trong R2:

  • Không gian vecto con 0 chiều là gốc toạ độ {O}
  • Không gian vecto con 1 chiều là đường thẳng đi qua gốc toạ độ
  • Không gian vecto con 2 chiều chính là R2

Trong R3

  • Không gian vecto con 0 chiều là gốc toạ độ {O}
  • Không gian vecto con 1 chiều là đường thẳng đi qua gốc toạ độ
  • Không gian vecto con 2 chiều chính là các mặt phẳng đi qua gốc toạ độ
  • Không gian vecto con 3 chiều chính là R3

Tham khảo: Bài tập tìm giá trị riêng và vectơ riêng có lời giải chi tiết

2. Chứng minh không gian vecto con

2.1 Kiểm tra có phải không gian vecto con

ví dụ cơ sở không gian vecto con

Vì phần tử đường chéo chính khác ban đầu (k+h≠1) => W không là vecto con

b. W={a+bx+cx2 | a+b-c=0} ⊂P2

Lấy 2 ma trận bất kỳ thuộc P2

m1=a1+bx1+c1x2 , a1+b1-c1=0; m2=a2+b2x+c2x2 , a2+b2-c2=0

km1+hm2=k(a1+bx1+c1x2)+h(a2+b2x+c2x2)

=(ka1+ha2)+ (kb1+hb2)x+ (kc1+hc2)x2

=(ka1+ha2)+ (kb1+hb2) – (kc1+hc2)=0

k(a1+b1-c1)+h(a2+b2-c2)=0

=> W là vecto con

3. Cách xác định chiều và cơ sở không gian vecto con

  • Cách xác định chiều không gian con:

+ Lập ma trận hàng

+ Biến đổi về dạng bậc thang

+ Dim = rank(A)

  • Cách xác định cơ sở không gian vector con:Lấy số vecto khác 0 của ma trận bậc thang làm cơ sở

Bài viết cùng chủ đề: Bài tập số phức toán cao cấp có lời giải – Đại số tuyến tính

3. Các dạng bài tập không gian vecto con có lời giải

3.1 Bài tập tìm không gian con: cơ sở, số chiều

a/ (1,-1,2), (2,1,3), (-1,5,0) ⊂ R3

Xét ma trận bổ sung sau:

Ví dụ cơ sở không gian vecto con

Vậy dim=3 và cơ sở là các vecto đã cho

b/ (1,1,-4,-3), (2,0,2,-2), (2,-1,3,2) ⊂ R4

Xét ma trận bổ sung:

Ví dụ cơ sở không gian vecto con

Vật dim=3 và cơ sở là (1,1,-4,-3),(0.-2,10,4),(0,0,-4,2)

c/ Xác định số chiều và một cơ sở của không gian nghiệm sau:

Ví dụ cơ sở không gian vecto 13

Giải

Xét ma trận bổ sung:

Ví dụ cơ sở không gian vecto 14

Ví dụ cơ sở không gian vecto 15

Đặt:

x1= -a/4

x2=-2a-8b/8

x3=a

x4=b

Ví dụ cơ sở không gian vecto 16

Ví dụ cơ sở không gian vecto 28

Vậy dim=2 và cơ sở là

Ví dụ cơ sở không gian vecto 18

d/ Xác định số chiều và một cơ sở của không gian nghiệm sau:

Ví dụ cơ sở không gian vecto 19

Giải

Xét ma trận bố sung

Ví dụ cơ sở không gian vecto 20

Ví dụ cơ sở không gian vevcto 21

Đặt

x1= -2a-b

x2=-a-2b

x3=a

x4=b

Ví dụ cơ sở không gian vecto 22

=a(-2,-1,1,0)+b(-1,-2,0,1)

Vậy dim =2 và cơ sở là (-2,-1,1,0), (-1,-2,0,1)

Trên đây là kiến thức cơ bản cùng bài tập không gian vecto con có lời giải. Hi vọng qua bài viết các bạn sẽ biết cách chứng minh 1 tập là không gian vecto con hay chứng minh w là không gian con của r3. Cảm ơn các bạn đã tham khảo tài liệu trên ttnguyen.net

Nguyễn Tiến Trường

Mình viết về những điều nhỏ nhặt trong cuộc sống, Viết về câu chuyện những ngày không có em