Hạng của ma trận – bài tập & lời giải chi tiết

Tổng hợp kiến thức cơ bản cùng các dạng bài tập hạng của ma trận thường gặp trong môn đại số và hình học giải tích giúp các bạn ôn tập dễ dàng hơn.

I. Hạng của ma trận là gì?

Định nghĩa hạng của ma trận

Giải

Xác định cấp của ma trận: Vì ma trận cỡ 4×6 nên có các định thức con cấp 1,2,3,4

Xét det(4)

hạng của ma trận

Định thức =0 vì có 1 hàng bằng 0 => Loại

Xét det(3) (Lấy bất kỳ)

ví dụ hạng của ma trận

det=3.4.3=36 ≠0

Vậy hạng của ma trận bằng 3

=> hạng của ma trận bậc thang chính là số hàng ≠ 0

Xem thêm: Bài tập ma trận có lời giải dễ hiểu nhất – nhân 2 ma trận

1.1 Phương pháp tìm hạng của ma trận

  • Bước 1: Đưa ma trận cần tìm về dạng bậc thang bằng phương pháp biến đổi siêu cấp trên hàng và cột
  • Bước 2: Số hàng khác 0 của ma trận bậc thang chính là hạng của ma trận đã cho.

II. Giải bài tập tìm hạng của ma trận

1.Tìm hạng của ma trận sau

ví dụ hạng của ma trận 2

Giải

-Chuyển về ma trận bậc thang

-Đổi chỗ hàng 1 và 2 để tính toán dễ dàng hơn

hạng của ma trận

hạng của ma trận 1

hạng của ma trận 2

hạng của ma trận 3

Có 2 hàng ≠0 nên rank(A) =2

2. Biện luận hạng ma trận theo theo tham số m

Hạng của ma trận 4

Giải

hạng của ma trận 5

hạng của ma trận 6

hạng của ma trận 7

hạng của ma trận 8

cho 1-m=0, 2-m-m2 =0 ta được 2 nghiệm m=1 và m=-2

+Với m=1

hạng của ma trận 8

=> rank(A)=1

+ Với m=-2

hạng của ma trận 9

=> rank(A)=3

+Với m≠1,-2 => rank(A)=3

3.Biện luận hạng ma trận sau theo m

hạng của ma trận 10

Giải

Biến đổi ma trận về ma trận tam giác trên

hạng của ma trận 11

Cho -m2-3m+4=0 ta đc 2 nghiệm m=-4; m=1

+Với m=1, 3m+2≠0

hạng của ma trận 12

=> Vậy với m=1,3m+2≠0 thì hạng ma trận là 3

+Với m=-4

hạng của ma trận 14

Vậy với m=-4,3m+2≠0 thì hạng ma trận là 4

Vậy với m ≠1, m≠-4,3m+2≠0 thì hạng ma trận là 4

Bài viết liên quan: Ma trận chuyển cơ sở – toạ độ – số chiều của không gian vectơ

4.Giải và biện luận hạng ma trận sau theo tham số m

hạng của ma trận 15

Giải

Đổi vị trí cột 1 và 4 để dễ tính hơn

hạng của ma trận 16

Biến đổi về ma trận tam giác trên

hạng của ma trận 17

Vậy với m =0 thì rank=2; m≠0 thì rank =3

5.Biện luận hạng ma trận theo tham số m

hạng của ma trận 17

Giải

Đổi cho để thuận tiện cho việc tính toán

hạng của ma trận 18

Biến đổi về ma trận tam giác trên

hạng của ma trận 19

+Với -5m+150=0 => hạng ma trận là 2

+Với -5m+150≠0 => hạng ma trận là 3

Tải File lý thuyết kèm bài tập vận dụng, trắc nghiệm tất tần tật

Nhập mã xác thực để lấy link:

Vào google search tìm...... >> đai giữ áo sơ mi hà nội >>........Click kết quả đầu tiên ... Kéo xuống dưới cùng chỗ "Copyright @ 2022 DAISOVIN.COM | All right reserved." để lấy mã xác thực gồm 4 ký tự: Xem hướng dẫn chi tiết tại đây

Như vậy, qua bài viết trên hi vọng bạn đã biết cách tìm hạng của ma trận, tính hạng của ma trận, tìm rank của ma trận và nắm vững kiến thức cơ bản giúp bạn giải quyết được các bài toán về hạng của ma trận. Cảm ơn bạn đã tham khảo tài liệu trên ttnguyen.net!

Nguyễn Tiến Trường

Mình viết về những điều nhỏ nhặt trong cuộc sống, Viết về câu chuyện những ngày không có em