Kiểm định giả thuyết về tỷ lệ – Bài tập có lời giải

Tỷ lệ là một công cụ quan trọng trong thống kê, giúp xác định sự khác biệt đáng kể giữa các nhóm dữ liệu. Trong bài viết này, chúng ta sẽ tìm hiểu phương pháp kiểm định giả thuyết về tỷ lệ qua một số bài tập có lời giải.

Xem thêm:

kiểm định giả thuyết về giá trị trung bình

các bài tập kiểm định giả thuyết về phương sai

1. Khái niệm kiểm định giả thuyết về tỷ lệ

Trong thống kê, kiểm định giả thuyết về tỷ lệ được áp dụng khi bạn muốn so sánh một tỷ lệ mẫu với một giá trị tỷ lệ cụ thể hoặc so sánh hai tỷ lệ mẫu với nhau. Phương pháp này thường sử dụng biến đổi chuẩn hóa để đưa ra quyết định.

2. Công thức kiểm định tỷ lệ

Giả sử biến ngẫu nhiên \(X\sim B(1,p)\), với tham số p. Nếu chưa biết p, nhưng có thể giả định giá trị của nó bằng \(p_0\) thì đưa ra giả thuyết thống kê.

  • Giả thuyết không (\(H_0\)): \(p=p_0\)
  • Giả thuyết thay thế (\(H_1\)): \(p \neq p_0\) hoặc \(p > p_0\) hoặc \(p < p_0\)

Công thức tính chỉ số kiểm định Z: \(Z=\frac{(f-p_0)\sqrt{n}}{\sqrt{p_0(1-p_0)}}\)

Trong đó:

  • \(f\): Tỷ lệ mẫu (tính bằng \(\frac{k}{n}\), với k là số trường hợp thành công và n là cỡ mẫu).
  • \(p_0\): Tỷ lệ giả định trong giả thuyết không.
  • \(n\): Kích thước mẫu.

Để kiểm định giả thuyết trên, từ tổng thể lập mẫu ngẫu nhiên kích thước n: \((X_1, X_2,..,X_n)\)

Nguyên tắc ra quyết định:

Công thức Giả thuyết thay thế Điều kiện bác bỏ \(H_0\)
\(H_0:p=p_0\)

\(Z=\frac{(f-p_0)\sqrt{n}}{\sqrt{p_0(1-p_0)}}\)

\(p \neq p_0\) \(\left| Z \right|>z_{\alpha/2}\)
\(p > p_0\) \(Z>z_{\alpha}\)
\(p < p_0\) \(Z<-z_{\alpha}\)

\(Z_{qs}=\frac{(f-p_0)\sqrt{n}}{\sqrt{p_0(1-p_0)}}\) so sánh với \(W_{\alpha}\) để đưa ra kết luận:

  • Nếu \(Z_{qs} \in W_{\alpha}\) thì bác bỏ H0 và thừa nhận H1.
  • Nếu \(Z_{qs} \notin W_{\alpha}\) thì chưa có cơ sở để bác bỏ H0.

3. Bài tập kiểm định giả thuyết về tỉ lệ có lời giải

Bài 1: Kiểm tra tỷ lệ sinh bé trai có cao hơn bé gái

Đề bài: Thống kê 10000 trẻ sơ sinh ở một địa phương, người ta thấy 5080 bé trai.
Hỏi tỷ lệ sinh con trai có thực sự cao hơn tỷ lệ sinh con gái không? Cho kết luận với
mức ý nghĩa 0,01.

Giải

Bài tập kiểm định giả thuyết về tỷ lệ

Bài 2: Kiểm tra tỷ lệ nhiễm bệnh giữa bé trai và bé gái

Đề bài: Trong một vùng dân cư có 18 bé trai và 28 bé gái mắc bệnh B. Hỏi rằng tỷ lệ
nhiễm bệnh của bé trai và bé gái có như nhau không ? (kết luận với ý nghĩa 5% và giả sử
rằng số lượng bé trai và bé gái trong vùng tương đương nhau, và rất nhiều ).

Giải

Bài tập kiểm định giả thuyết về tỷ lệ

Trên đây là công thức tính và lời giải một số bài tập kiểm định tỷ lệ trong xác suất thống kê. Cảm ơn các bạn đã tham khảo trên ttnguyen.net.

Nguyễn Tiến Trường

Mình viết về những điều nhỏ nhặt trong cuộc sống, Viết về câu chuyện những ngày không có em